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We point out an issue in the derivation of a nonempirical parameter in the Wu-Cohen exchange functional.
With the value of the parameter that yields the correct fourth-order gradient expansion of the functional, the
performance of the Wu-Cohen exchange functional is worse than the Perdew-Burke-Ernzerhof functional.
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In a recent article,1 Wu and Cohen developed a general-
ized gradient approximation �GGA� to the density functional
that gives remarkably good performance for lattice constants
and bulk moduli for 18 tested solids. Contrary to appear-
ances, the Wu and Cohen �WC� derivation does not yield a
functional that recovers the fourth-order gradient expansion.
The parameter c was chosen to make the leading term in
Perdew-Burke-Ernzerhof �PBE� recover the fourth-order ex-
pansion, ignoring the higher-order corrections. If, instead, c
is chosen to make the final functional recover the fourth-
order expansion, the improved performance is lost. We will
show the derivation in this comment to clarify this issue.

The spin-scaling relation2 for exchange energy allows us
to just consider the exchange functional for a spin-
unpolarized system. In the GGA framework, the exchange
energy density per particle can be written as

�x�n,s� = �x
LDA�n�Fx�s� , �1�

where n is the electron density �n=n↑+n↓�, s
= ��n� / �2�3�2�1/3n4/3� is the dimensionless reduced gradient,
�x

LDA�n� is the exchange energy density per particle for a
uniform electron gas �therefore it is local-density approxima-
tion �LDA� for exchange�, and Fx�s� is the exchange en-
hancement factor. For a slowly varying density, Fx has the
fourth-order gradient expansion determined by Svendesen
and von Barth3

Fx
SvB = 1 + �10/81�p + �146/2025�q2 − �73/405�qp + Dp2

+ O��6� , �2�

where p=s2, q= ��2n� / �4�3�2�2/3n5/3� is the reduced Laplac-
ian, and D is a coefficient. By using D=0 �the best numerical
estimate for this coefficient4� and q� 2 / 3 p �note that this
approximation is based on a misinterpretation of Eq. �7� of
Ref. 5�, Eq. �2� reduces to

Fx
SvB = 1 + �10/81�p + ��146/2025�„�2/3�…2

− �73/405��2/3��p2 + O�p3� . �3�

Since p2=s4, the p2 term is the fourth-order term in s. The
coefficient of p2 in Eq. �3� is the target of the construction of
the WC exchange functional because the Wu-Cohen paper
says “the parameter c is set to recover the fourth-order pa-
rameters in Eq. �5� for small s.” Their Eq. �5� is our Eq. �2�.

In general one does not use truncated density-gradient ex-
pansions �DGEs� such as Eq. �2� directly because higher-
order terms are sometimes important in the range of s values

that play a significant role in real systems. Furthermore, the
truncated expansions do not satisfy certain global constraints
on the accurate density functional. Instead one chooses a
more general global approximation for FX and determines its
parameters in other ways;6 this is the essence of a GGA. The
WC exchange functional is based on the PBE exchange func-
tional. The PBE �Ref. 7� enhancement factor for exchange is

Fx
PBE = 1 + ��1 −

1

1 +
x

�
� , �4�

where x=�s2=�p. The parameter � is set to be 0.219 51 in
Fx

PBE; this value is derived by recovering the LDA linear
response, i.e., the second-order exchange gradient correction
cancels the second-order correlation gradient correction as
s→0. Note that this choice of � in PBE exchange violates
the second-order term in the DGE of Eq. �2�, and � should
be set to 10 / 81 to recover the second-order DGE, as done in
PBEsol by Perdew et al.8 recently. The parameter � is set to
be 0.804 in Fx

PBE, which is determined by ensuring satisfac-
tion of the Lieb-Oxford bound.9

Wu and Cohen use the same functional form �our Eq. �4��
and parameters �� and �� as in PBE exchange but a compli-
cated ansatz for x:

xWC = �10/81�s2 + �� − �10/81��s2 exp�− s2� + ln �1 + cs4� .

�5�

They determine the value of c by trying to recover the coef-
ficient of p2 in Eq. �3�. To accomplish this, Wu and Cohen
set the parameter c in Eq. �5� to be

cWC = ��146/2025�„�2/3�…2 − �73/405��2/3�� + �� − �10/81��

= 0.007 932 5. �6�

However, Eq. �6� does not recover the fourth-order term in
the density functional. A Taylor expansion of xWC gives

xWC � �p + ��146/2025�„�2/3�…2 − �73/405��2/3��p2 + O�p3� .

�7�

Substituting xWC in Eq. �4� to obtain Fx
WC and making a

Taylor expansion of Fx
WC gives

Fx
WC = 1 + �p + ��146/2025�„�2/3�…2

− �73/405��2/3� − ��2/���p2 + O�p3� . �8�

Equation �8� clearly shows that the WC exchange functional
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does not recover the DGE value of the coefficient of p2 in
Eq. �3�. The correct value of c to recover the fourth-order
expansion in Eq. �3� is

c� = ��146/2025�„�2/3�…2 − �73/405��2/3��

+ �� − �10/81�� + ��2/��

= 0.067 864. �9�

We calculated the lattice constants for three solids, namely,
K, NaCl, and Si, with the value of c� given in Eq. �9� by
using a locally modified GAUSSIAN03 code10 with the Gauss-
ian basis sets used in a previous study of Staroverov et al.11

and with 1000 k points for Si and NaCl and 12 000 k points
for K. The results are listed in Table I, along with the results
for PBE and the original WC functional from Ref. 1. Table I
shows that the original WC exchange functional has much
better performance for lattice constants than using the value
of c in Eq. �9�, although the value of cWC does not yield the
functional correct through fourth order. Table I also shows
that with c=c� the value of c that makes the resulting func-

tional obey the stated condition; the Wu-Cohen functional
performs worse than the original PBE functional. We con-
clude that enforcing the correct fourth-order term in the DGE
does not lead to improved results for real systems. The suc-
cess of the original WC functional is therefore judged to be
empirical or fortuitous.
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TABLE I. Calculated and experimental equilibrium lattice
constants a0 �in Å� of three solids.

PBEa cWC=0.007 932 5 a c�=0.067 864 Expt.b

K 5.295 5.246 5.403 5.212

NaCl 5.700 5.622 5.768 5.580

Si 5.475 5.433 5.504 5.423

aThe data for PBE and cWC are from Ref. 1.
bFrom Ref. 11, with estimates of the zero-point anharmonic expan-
sion removed to yield classical equilibrium value.
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